Solvent effects on one-bond, ¹³C—¹H coupling constants of carbohydrates

KLAUS BOCK AND CHRISTIAN PEDERSEN

Institute of Organic Chemistry, The Technical University of Denmark, DK-2800 Lyngby (Denmark) (Received June 26th, 1978, accepted for publication, July 17th, 1978)

The use of one-bond, ¹³C-¹H coupling constants for assignment of anomeric structure to hexopyranose derivatives¹ and for determination of conformational equilibria of pentopyranose derivatives³ has been described recently From these studies, it appears that the absolute value of the coupling constant between C-1 and H-1 is dependent on the electronegativity of the substituent at C-1, the orientation of the carbon-hydrogen bond relative to the lone pairs of the ring oxygen, and the nature and total number of electronegative substituents attached to the rest of the molecule. The last point is illustrated by comparison of the ¹³C-1-H-1 coupling constant (172 Hz) of methyl tetra-O-acetyl-α-D-glucopyranoside (3) with the corresponding value (169 Hz) of the 3,4-dideoxy derivative (5) (see Table I) Similar results have been reported elsewhere^{2b}

We have now investigated a number of simple sugar molecules in different solvents and found that, for compounds having unprotected hydroxyl groups, one-bond, carbon-hydrogen coupling constants vary with the solvent. This effect is probably caused by variation in the solvation and hence the electronegative character of the hydroxyl groups, rather than by conformational changes, because the chemical shifts are not drastically changed from one solvent to another

TABLE I

ONE-BOND, ¹⁷C-¹H COUPLING CONSTANTS" AND CHEMICAL SHIFTS^b FOR HEXOPYRANOSE DERIVATIVES IN DIFFERFUT SOLVENTS

Com-	Coupling	Coupling constants (1),	$(^1J, Hz)$					Сһетіса	Themical shifts (8)	2					Solvent
punod	C-1,H-1	C-1,H-1 C-2,H-2 C-3,		C-4,H-4	C-5,H-5	C-6,H-6	H-3 C-4,H-4 C-5,H-5 C-6,H-6 C-0Me,H	ट	C-2	C-3	C4	53	92	C-OMe	
1	167	145	4.	143	142	141	142	8 66	727	73 6	70 5	72.2	61,3	54 6	(CD ₃) ₂ SO
	170	147	148	146	145	145	14 1	666	72.2	73 9	70 4	719	61.5	55 6	D ₂ O
7	156	142	u	u	į.	140	142	1040	736	6 9/	70 3	69/	614	56 4	(CD ₃) ₂ SO
	160	145	145	143	141	145	144	103 7	73 7	75 5	70 3	75 5	617	57 8	D ₂ O
3	172	151	151	151	<u>4</u>	148	143	0 96	70 0	69 4	68 2	8 99	617	548	(CD ₃) ₂ SO
	172	151	151	151	145	148	143	963	70 4	69 7	68 2	8 99	9 19	22 6	CDCI3
4	165	140	v	·	140	140	141	266	28 2	26 5	56 9	089	643	543	(CD ₃) ₂ SO
(Ref. 6)		143	u	·	143	143	143	1000	8 69	76 0	26 3	68 5	64 8	5 2 6	D ₂ O
		143	į,	u	143	143	142 5	99 4	8 89	76 0	268	68 2	65 1	549	CDCI3
S	169	148	132 5	129	144	148	143	963	70 0	22.7	26 0	65 7	65 7	54.9	(CD ₃) ₂ SO
(Ref 6)		148	132.5	128 5	143	148	142 5	970	70 2	22 9	26 5	662	66 1	54 9	CDCI3
9		9	o		155	150		101 9	729	69 7	6 69	6 9/	65 2		(CD ₃) ₂ SO
(Refs 7		u	v	9	157	153		101 9	730	70 4	70 1	111	66 1		D ₂ O
and 8)															

^aMeasured by using the gated decoupling technique⁵ on a Bruker WH-90 instrument at 22 63 MHz, with a sampling time twice as large as the pulse repetition time, $\alpha = 90^{\circ}$ (18 μ sec), and digital resolution of ± 0.7 Hz ^bChemical shifts in (CD₃)₂SO relative to δ [(CD₃)₂SO] = 39 6 pp m., in CDCl₃ relative to Me₁S1, and in D₂O relative to $\phi(1,4$ -dioxane) = 67 4 p m Concentrations, 25% Coverlapping resonance

In Table I are shown the coupling constants for solutions of methyl α - and β -D-glucopyranoside (1 and 2) in D₂O (data from Ref 1) and in methyl sulfoxide- d_6 In both cases, the coupling constants are 2–4 Hz smaller in (CD₃)₂SO than in D₂O, not only for the ¹³C-1-H-1 values but also for the other ¹J_{13C H} values The same change in coupling constants with solvent was found for methyl 3,4-dideoxy- α -D-erythro-hexopyranoside (4) In this case, it was possible to determine the coupling constants in D₂O, CDCl₃, and (CD₃)₂SO, the values decrease from D₂O to (CD₃)₂SO

The one-bond, $^{13}C_{-}^{-1}H$ coupling constant of methanol shows the same dependence on solvent in D_2O , 1422 ± 03 Hz, in $CDCl_3$, 1410 ± 03 Hz, and in $(CD_3)_2SO$, 1385 ± 03 Hz A similar solvent effect has been described by Evans⁴ for the $^{13}C_{-}^{-1}H$ coupling constant of $CHCl_3$

The fully acetylated derivatives (3 and 5), however, do not exhibit any difference, all coupling constants being identical in CDCl₃ and (CD₃)₂SO within experimental error. The one-bond, C-H coupling constant of the H₃CO-group of methyl acetate was also found to be virtually independent of the solvent in D₂O, 147.7 ± 0.3 Hz; in CDCl₃, 146.5 ± 0.3 Hz, and in (CD₃)₂SO, 146.6 ± 0.3 Hz

To eliminate the possibility of conformational changes induced by the solvent, we measured the ${}^{1}J_{13_{C}}$ H values of the more-rigid 1,6-anhydro- β -D-altropyranose (6) in D₂O and (CD₃)₂SO and observed a difference of 1-3 Hz (Table I), with the smaller values being obtained in (CD₃)₂SO

Changes in one-bond, carbon-hydrogen coupling constants with change in solvent for molecules having unprotected hydroxyl groups (and possibly other polar substituents) can thus be relatively large Hence, comparison of one-bond, ¹³C-¹H coupling constants should be made in the same solvent

ACKNOWLEDGMENT

The spectrometer was provided by the Danish Natural Science Research Council.

REFERENCES

- 1 (a) K Bock, I Lundt, and C Pedersen, Tetrahedron Lett, (1973) 1037-1040, (b) K Bock and C Pedersen, J Chem Soc, Perkin Trans 2, (1974) 293-297
- 2 (a) A S Perlin, N Cyr, R G S Ritchie, and A Parfondry, Carbohydr Res., 37 (1974) C1-C4, (b) S Ōmura, A Nakagawa, A Neszmelyi, S D Gero, A-M Sepulchre, F Piriou, and G Lukacs, J Am Chem Soc., 97 (1975) 4001-4009, (c) F R Taravel and Ph J A Vottero, Tetrahedron Lett., (1975) 2341-2344, (d) G K Hamer and A S Perlin, Carbohydr Res., 49 (1976) 37-48
- 3 K BOCK AND C PEDERSEN, Acta Chem Scand, Ser B, 29 (1975) 258-264
- 4 D F Evans, J Chem Soc, (1963) 5575-5577
- 5 R FREEMANN AND H D W HILL, J Magn Reson, 5 (1971) 278-280
- 6 K BOCK AND C PEDERSEN, Acta Chem Scand, 25 (1971) 1021-1030
- 7 R G S RITCHIE, N CYR, AND A S PERLIN, Can J Chem, 54 (1976) 2301-2309
- 8 H Paulsen, V Sinnwell, and W Greve, Carbohydr Res, 49 (1976) 27-35